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Ahtract - AIGaN/GaN HEMTs have a high potential for 
high-power applications at microwave frequencies. We 
developed a behatioural model corresponding to the 
operation condition as how this device will he used in power 
amplifiers, i.e., at a high output load. The model is based on 
time-domain large-signal ItY&3S”Rtlll?“t~, and the 
representation format is an artificial neural network (ANN). 
AIGaNlGaN devices on sapphire are known to he 
temperature sensitive. Therefore, we also consider the 
incorporation of the self-heating effect in the behavioural 
model description. 

I. INTRODUCTION 

GaN-based devices are extensively being pursued for 
potential applications in high-power microwave circuits 
[I]. Specific physical characteristics, such as pronounced 
temperature dependency, render the application of 
‘classical’ modelling techniques, such as direct extraction, 
difficult. In this paper, we describe the construction of a 
behavioural model. This modelling appro&h has as 
advantage that it is completely based on (vectorial large- 
signal) measurements only and consequently that the 
precise equivalent scheme does not need to be known. The 
basic principle of the modelling procedure has been 
described in an earlier publication [2]. The contribution of 
this paper is the application of this method to AlGaNiGaN 
HEMTs, whereby two specific points of attention are the 
use of loadpull measurement data for model building, and 
the incorporation of the self-heating effect. The former is 
because AIGaN/GaN HEMTs have little or no gain when 
measured with a 50 Ohm load, and consequently there is 
no practical use of having a model at this ‘standard’ load 
condition. Therefore, in order to have a model that is 
ready to be used in actual applications, i.e., power 
amplifier designs, we constructed it from load-pull data. 
The second item, the self-heating effect, is known to be 
important in case of AlGaNiGaN HEMTs on sapphire 
substrates. 

In Section II, details about the measurement set-up are 
described. The modelling procedure is reviewed and 
extended for its application to AlGaN/GaN HEMTs in 
Section 111. Modelling results are shown and analysed in 
Section IV. 

II. EXPERIMENT DESIGN 

As the modelling method is based on measurementz 
only, the data gathering part can not be underestimated. 
The considered device is a 0.5 am x 100 am unpassivated 
AlGaNiGaN HEMT, fabricated by IEMN. Processing 
details and performance results can be found in Ref. [3]. 
In general, the optimal load for FET devices is a few Ohm, 
whereas the optimal load for Gai’-based devices of this 
geometry is in the order of kOhm. Applying loads close to 
the edge of the Smith chart is a challenging task for 
metrology. In OUT set-up we combined passive and active 
loadpull. A passive tuner was used to apply a high load, 
and excursions from this position were realised using 
active injection. By automatically varying the amplitude 
and phase of the injection signal, we realised a range of 
180 different loads, as represented on the Smith chart of 
Fig. 1. 

At all these load conditions and at a fixed fundamental 
frequency (2.4 GHz), DC bias (V,,p -0.6 V, Y&= 25 
V) and input power (14.5 dBm), the terminal voltages and 
currents of the device were measured using a Large-Signal 
Nehvork Analyzer (LSNA) set-up [4]. The advantage of 
this instrument is that the four quantities (two terminal 
voltages and two terminal currents) are measured 
simultaneously, which implies that the phase relationships 
are conserved. This is important to be able to distinguish 
between current and charge contributions. The time- 
domain representation of these measured characteristics is 
the starting point for the behavioural modelling procedure, 
highlighted in the next Section. 
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Fig. 1. Smith chart with overview of the 180 realised loads 
(denoted in dots). 

III. MODEL CONSTRUCTION 

A. Modelling Method 

The basic principle of the modelling method [2] 
involves that the considered microwave two-port device 
can be described by equations of the form: 

,,(t)=f;(~(f),~(f),C;;(f),Y;(f),~(l),~(f),-- &),i,W) (1) 

I,(I)=f,(V,(f),Y,(f),~(f),~(l),~(I),~~(f),-. ,i,(%i,(O?) 

with I,(t) and I?(t) the terminal currents, V,(f) and V,(t) the 
terminal voltages, and the superscript dots representing the 
(higher order) time derivatives. 

The objective of the modelling technique is to find the 
number of independent or state variables, and 
consequently to determine the &&tional relationshipsf,() 
and f2() by fitting the measured terminal currents to the 
state variables. 

B. Modelling Procedure 

The first step, as mentioned above, is collecting time- 
domain data at operating conditions that are realistic for 
the device use. The next step consists in determining the 
independent (or state) variables. Since we are considering 
a HEMT device, we can easily estimate that a good set of 

state variables be the terminal voltages, and the 
corresponding first and second order time derivatives. 
Otherwise, the ‘embedding’ technique, based on the ‘false 
nearest neighboor’ principle, can be executed to assess the 
necessary state variables [2,5]. 

To include the temperature dependency, we make use of 
the fact that the net dissipated power P,,, is a good 
measure for the actual device temperature [6,7]. 
Therefore, we add P,,,, as 7th independent variable, and 
calculate it from: Pna =PdC*(I-PAE) with PAE the power 
added efftciency. 

Subsequently, the functional relationshipsf/() and60 
have to be determined. This is done by fitting the 
measured time-domain terminal currents towards the 
independent variables. The terminal voltages are 
measured, while the derived quantities, like the fust and 
second order time derivatives, are calculated from the 
measurements. As fitting function, all types of analytical 
expressions are virtually possible. However, it can be 
advisable to bear the typical device characteristics in mind 
when selecting a particular analytical representation. For 
example, higher-order polynomials have exponential-like 
asymptotes, which might give cause to convergence 
problems. Therefore, we adopted the use of artificial 
neural networks (ANNs). The topology of the ANN is 
limited to one hidden layer, and the selected activation 
function is the sigmoid function due to its well-defined 
and smooth asymptotes. The ANN is initially trained 
using the back-propagation algorithm, and subsequently 
fine-tuned using the Newton-Raphson technique, as 
implemented in the NeuroModeler program, which is 
described in detail in Refs. [8]-[lo]. 

IV. MODELL~G RESULTS 

A. ANN Model Results 

We consider two alternatives: Model A is the model 
with 6 state variables included, whereas model B is the 
model with 6 + 1 (=P,,.,) state variables. The number of 
hidden neurons for both cases is 20. This number provides 
a good trade-off behveen model accuracy and complexity. 
The models have been trained using a set of 60 different 
load values, and have been tested by a different set of 60 
loads. 

Table I summarizes the test results, consisting of the 
average and maximal test errors for both currents. The 
table also lists the correlation coefficient, which is a 
measure for whether we selected the correct set of 
independent variables. The error levels are low, and the 
high correlation denotes that we have a good set of 
independent variables. We notice only a marginal 
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improvement in terms of both correlation and test errors 
when Pna gets included. We will separately come back to 
this in the next Subsection. 

Next, we implement the time-domain behavioural 
models in the ADS microwave circuit simulator by means 
of a symbolically defined device (SDD). The SDD allows 
the calculation of the (higher order) time derivatives of the 
terminal voltages during the simulation, enabling the 
evaluation of the expressions for the currents. 

Fig. 2 shows the variation of the output power as 
function of the index number of the applied loads. 
Simulations were carried out at exactly the same 
excitation conditions as the measurements. We observe 
that the simulations are well capable to predict the correct 
output power. 

Since the load: are varied automatically around a 
realistic start load, set by the passive tuner, the optimal 
load condition for maximal output power can 
straightfonvardly be determined. Fig. 3 compares the 
measured and simulated time-domain waveforms of the 
terminal currents for the case of model B, at the optimal 
load condition. This load was not present in the training 
set of 60 loads. We notice that the modelling accuracy is 
excellent. 

Table I: Owwew of AlGaNiGaN HEMT results after training 
an ANN based on muln-load large-signal measurements. Model 

A is without and model B is with P,, included. 
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Fig. 2. Comparison of the measured (x) and modelled (sohd 
line) output power [in W] as timction of the index of the applied 
loads. 

time. psec 

Fig. 3. Comparison of the measured (x) and modelled (solid 
line) terminal currents [in mA] at the optimal load condition 
Z,00F715+j522 Ohm. 

We indicated above that including P,,, as state variable 
has no significant influence on the model accuracy. The 
reason is that there are little DC current variations, and 
consequently P,,, and temperature variations, within the 
considered training set, because the model is built from 
measurements at a fixed DC bias condition, and at load 
conditions that only occupy a small portion of the Smith 
chart. In this example, Pne, varies between 195 mW and 
310mW. 

To increase the variation in P,,,, we also constructed a 
behavioural model from multi-bias large-signal 
measurements, as opposed to multi-load large-signal 
measurements. The device dimensions (1.5 wn x 100 am) 
and the fundamental frequency (4 GHz) were slightly 
different in this case. Power-swept single-tone 
measurements were performed at gate voltages near V, 
and near maximal g,,,, and at drain voltages ranging 
between 2 V and 20 V, and this at three selected load 
conditions. After training the ANN, we found that the 
average errors decrease slightly (from 1.1% to 1 .O% for 4, 
and from 1.5% to 1.1% for 12) when the self-heating effect 
is incorporated, although the variation in P=, 1s much 
higher (between 7.2 mV and 1.26 W). The limited effect 
of adding Pn, to the model description is probably related 
to the fact that the considered device widths (100 eon) are 
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very small in terms of high-power devices, and 
consequently that self-heating remains limited. 

To illustrate that P,,, can represent self-heating, we 
show in Table II the results of an ANN model for a 0.8 am 
x 10 can SiGe HBT [ll], which is also a strong 
temperature dependent device. In this case as well, the 
training set was composed of a large range of DC biases‘ 
and input powers. The corresponding I’_, is ranging 
behveen 0 mW and 20 mW. From Table II, we notice a 
clear improvement in model accuracy in terms of both the 
average and maximum errors when adding a temperature- 
sensitive state variable. 

Table II: Overview of SiGe HBT results after training an ANN 
based on multi-bias large-signal measurements. Model A is 
without and model B is with P,,, included. 

V. CONCLUSION 

A behaviouml model for AlGaNiGaN HEMTs has been 
constructed from near-optimal-load time-domain large- 
signal measurements. We have shown that the artificial 
neural network representation gives accurate results when 
it gets evaluated at loads that were not part of the training 
set. The self-heating effect, although not essential for the 
considered device dimension, can be incorporated by an 
additional independent variable, being the net dissipated 
power. The resulting small ANN test error, and the 
excellent agreement with large-signal verification data 
show that this modelling approach is a valuable candidate 
to be used in actual power amplifier circuit design. 
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